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IIP Abstract

The state-of-the-art 2-micron coherent Doppler wind lidar breadboard

at NASA/LaRC will be engineered and compactly packaged

consistent with future aircraft flights. The packaged transceiver will

be integrated into a coherent Doppler wind lidar system test bed at

LaRC. Atmospheric wind measurements will be made to validate the

packaged technology.

This will greatly advance the coherent part of the hybrid Doppler

wind lidar solution to the need for global tropospheric wind

measurements.
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IIP and the Global Tropospheric Wind Profiles Roadmap
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IIP and the LaRC Development of Pulsed,

2-Micron Laser Technology For Space
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IIP – Scope of the Effort
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Pulsed Doppler Wind Lidar System
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Lasers and Optics Portion
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Receiver
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IIP- Milestones & Schedule
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Coherent Doppler Wind Lidar Technique
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      What Is “Coherent” Lidar?
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Benefits Of The LO Laser

• Heterodyne gain effectively eliminates signal shot

noise, thermal or Johnson noise, dark-current noise,

and amplifier noise. LO spatial filtering eliminates

background light noise

• Translation of optical frequency to radio frequency

allows signal processing with mature and flexible

electronics and software, and reduces 1/f noise

• Extremely narrow bandpass filter using electronics or

software rejects even more noise

• Frequency of beat signal is proportional to the target

velocity - truly a direct measurement of velocity
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• High accuracy

• High photon efficiency

• No intensity measurements needed

“heterodyne detection can allow measurement of the phase

of a single-frequency wave to a precision limited only by the

uncertainty principle”

Michael A. Johnson and Charles H. Townes

Optics Communications 179, 183 (2000)

Benefits Of The LO Laser
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IIP Packaged Transceiver Requirements
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Laser Design Considerations

• Laser wavelength

• Laser material

• Laser pumping geometry

• Laser cavity design

• Laser architecture
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Oscillator cavity length

• Long cavity length is needed to obtain narrow

linewidth

• Pulse length is one of the critical parameters of a

coherent Lidar.

• A short pulse compromises frequency resolution

while a long pulse compromises range resolution.

• To meet the pulse length requirement, the oscillator

length was changed from 2m to 3m. It prolongs the

pulse width to near 200ns

• The resonator has six mirrors and 8 bounces.
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LRRP Pulsed, 2-Micron Laser Transmitter Opto-Mechanical Design

• 3-m, bow-tie, unidirectional master oscillator-power amplifier

• Seeding and receiver optics on reverse side

• Expect this hardware in about 6 weeks for LRRP

AO Q-switchOscillator Laser Head

Amplifier Laser Head
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Proposed Transceiver “Box”

• Modular approach with injection

seed & local oscillator separate

from transceiver.

• Separate seed/LO allows

flexibility to adapt to 3

measurements scenarios:

-simple, fixed frequency LO

for ground or low platform

speed.

- higher intermediate

frequency for high platform

speed

- swept LO for very high

platform speed.

-DIAL of CO2

Note: only optical paths are represented; electrical and water paths are not shown.
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Seed/LO Option 1
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• baseline design for ground-based implementation.

• recommended for IIP demonstration.

• fiber-to-free space through AOM then back to fiber

is disadvantageous—looking into fiber optic pigtailed AOM.

• could be packaged in rack-mount breadboard with fan for 

cooling (need thermal analysis).
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Test Bed: Putting it all Together

/4

turning mirror

(deflects beam up

toward scanner)

90%

10%

CW master

oscillator

AOM

105 MHzisolator

PBS

isolator

isolator

?/2

?/2

Outgoing Pulse

Atmospheric Return

Injection Seed

Pulse Monitor

Local Oscillator

isolator isolator

/2

/2

Q -switch

Ho:Tm:YLFPZT
Q-

switchHo:Tm:LuLiFPZT

resonance

detector

resonance

detector

pulse

monitor

(on flip stage)

50/50 coupleramplifier

visible alignment 

laser

10%

90%

50/50 coupler

connector

pulsed laser: may be folded with more mirrors

aspheric optic

(if necessary)

beam 

expander

fiber optic port



24

VALIDAR Scanner

• scanner is mounted on roof of laboratory

trailer.

• 8-inch clear aperture.

• can be pointed or scanned in

elevation/azimuth for hemispherical

coverage.

• linked to data acquisition computer for

automated profiling of wind.
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VALIDAR Telescope

• off axis Dall-Kirkham

design.

• 6-inch aperture

• 20X expansion



26

Data Acquisition and Processing (already built)
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Atmospheric Measurements

(will be better than this VALIDAR sample)
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Summary

• IIP project 6 months into 36 month effort

• Leveraging LRRP work on compact laser in 05 and 06

• Plan on significant steps of compact, engineered packaging of state-
of-the-art laser/lidar technology. TRL definitions do not reveal
significant progress.

• Companion IIP at GSFC for noncoherent Doppler wind lidar will
complement this project to permit hybrid DWL on aircraft and then
in space

• Project very consistent with findings of NASA/ESTO Laser/Lidar
Technology Requirements Working Group results (FY06). To be
issued in final report

• Anticipate strong endorsement of global winds by NAS decadal
study on earth sciences

• Same technology promises additional applications for earth and
Mars


